If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=43=30x-5
We move all terms to the left:
3x^2-(43)=0
a = 3; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·3·(-43)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{129}}{2*3}=\frac{0-2\sqrt{129}}{6} =-\frac{2\sqrt{129}}{6} =-\frac{\sqrt{129}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{129}}{2*3}=\frac{0+2\sqrt{129}}{6} =\frac{2\sqrt{129}}{6} =\frac{\sqrt{129}}{3} $
| a=2(1.7272)/1.823^2 | | 45x=126/7 | | 12+4x-8+5x=12x+4 | | C(x)=50.00-0.07 | | 3x+2x+x=72 | | 7-6v+8v=-5 | | 14-p/3=p/4 | | 8+r=4 | | 7x+24+3x+92=90 | | 10x=215 | | -7x-8x=3+x | | 150+3(a+2=186 | | 9x=215 | | 8x=215 | | 6x^2+7=199 | | 7x=215 | | 6+3x=-8+4x | | 1/6t-5/6=3 | | 6+3x=-8+4x3 | | 1/6t=5/6=3 | | 7(5x+9)=12-(×+9) | | 9x-5x=-7-3x | | 3/9x-1/4=1/2 | | $75+$35.75x=$164+$17.95 | | -9+2x=6 | | 2x²-27=0 | | 12+4x=0.5 | | 13x+48=7x+52 | | 320+32x=2 | | x²-11x+22=0 | | -7x+3x=-4 | | 3a+12=20 |